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This work determines the pressure-velocity relation of bubble flow in polygonal 
capillaries. The liquid pressure drop needed to drive a long bubble at a given velocity 
U is solved by an integral method. In this method, the pressure drop is shown to 
balance the drag of the bubble, which is determined by the films at the two ends of the 
bubble. Using the liquid-film results of Part 1 (Wong, Radke & Morris 1995), we find 
that the drag scales as CaZi3 in the limit Ca+O (Ca = ,uU/u, where ,u is the liquid 
viscosity and u the surface tension). Thus, the pressure drop also scales as Ca213. The 
proportionality constant for six different polygonal capillaries is roughly the same and 
is about a third that for the circular capillary. 

The liquid in a polygonal capillary flows by pushing the bubble (plug flow) and by 
bypassing the bubble through corner channels (corner flow). The resistance to the plug 
flow comes mainly from the drag of the bubble. Thus, the plug flow obeys the nonlinear 
pressure-velocity relation of the bubble. Corner flow, however, is chiefly unidirectional 
because the bubble is long. The ratio of plug to corner flow varies with liquid flow rate 
Q (made dimensionless by ga2/p, where a is the radius of the largest inscribed sphere). 
The two flows are equal at a critical flow rate Q,, whose value depends strongly on 
capillary geometry and bubble length. For the six polygonal capillaries studied, 
Q, 6 For Q, < Q < 1, the plug flow dominates, and the gradient in liquid 
pressure varies with Q213. For Q < Q,, the corner flow dominates, and the pressure 
gradient varies linearly with Q. A transition at such low flow rates is unexpected and 
partly explains the complex rheology of foam flow in porous media. 

1. Introduction 
A Newtonian liquid flowing in a straight capillary obeys a linear pressure-velocity 

relation, independent of capillary geometry. When a long bubble is inserted into the 
capillary, the relation becomes nonlinear if the capillary is circular (Bretherton 196 1). 
In this paper, we show that for a polygonal capillary the relation can be linear or 
nonlinear depending on the liquid flow rate and the length of the bubble. 

In a circular capillary, a long bubble acts as a tight-fit piston. Because the liquid film 
lubricating the bubble is thin (- Ca213), dissipation of mechanical energy in the film is 
an order higher than that in the bulk. Bretherton (1961) has shown the pressure needed 
to move a long bubble scales as Ca213. This scaling also applies to a column of liquid 

t Present address: The Levich Institute, The City College of CUNY, New York, NY 10031, USA. 
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containing the bubble because the pressure loss in the bulk liquid is O(Ca), and because 
the liquid and the bubble move at roughly the same velocity. 

In a polygonal capillary, a long bubble acts as a leaky piston (figure 1). The leaky 
corners have the same order of cross-sectional area as the capillary. Thus, the liquid 
can either push the bubble (plug flow) or bypass the bubble through corner channels 
(corner flow). The plug flow obeys the pressure-velocity relation of the bubble because 
the pressure work driving the plug flow is dissipated predominantly by the liquid films 
lubricating the bubble, as in circular capillaries. Sections 2 4  determine that the 
pressure needed to drive a long bubble scales as Ca2/3. The same scaling therefore holds 
for plug flow. Corner flow, however, obeys a linear pressure-velocity relation because 
the flow is approximately unidirectional (95). A composite expression valid for both 
flows is derived in 96, and shows that for a given bubble the corner flow dominates at 
extremely low flow rates. Application of the linear regime to form flow is discussed in 
96. 

An integral method is used in this work to determine the fluid pressure needed to 
move a long bubble at a given velocity. This method differs from the matched- 
asymptotics method used in calculating the pressure in circular tubes by Bretherton 
(1961). In that method, the zero-order outer solution with Ca = 0 yields the shape of 
the static bubble. The first-order inner solution determines the profile of the fluid film 
deposited by the bubble because, in the limit Ca+O, viscous forces in the film are 
comparable with capillary forces. Matching the inner and outer solutions gives the 
curvature of the first-order outer solution. The curvature is then equated to a pressure 
jump across the interface. In this way, Bretherton established that the pressure drop 
needed to move a long bubble scales as C U ~ / ~ .  

In the integral method, the fluid pressure drop is shown to balance the drag of the 
bubble, which is the shear force exerted by the wall on the fluid films surrounding the 
bubble. The force balance is described in 92. Section 3 evaluates the drag using the fluid- 
film results derived in Part 1 (Wong, Radke & Morris 1995). Section 4 calculates the 
pressure drop. In the method of matched asymptotic expansions, the curvature of the 
first-order outer solution must be determined subject to the matching conditions. This 
is an exceedingly difficult task for non-axisymmetric capillaries. In the integral method, 
the pressure drop is found without using the first-order outer curvature. Thus, the 
integral method is simpler and better illustrates the physics of the problem. 

Figure 1 shows that a strongly non-wetting bubble in a polygonal capillary does not 
invade the corners. The reduced contact between the bubble and the capillary wall 
suggests that the drag of a bubble is less in a polygonal capillary than in a circular 
capillary. Thus, it should be easier to drive a long bubble through a polygonal 
capillary. However, results of Ratulowski & Chang (1989), which is the only published 
work related to the present problem, indicate the opposite. They computed the pressure 
drop of a long bubble in a square capillary. By assuming that the resistance to bubble 
motion arises from liquid-filled corners, they obtained approximate solutions for 
Ca > 3 x indicating that the pressure drop is larger in a square capillary. We find 
that the drag originates from liquid films and not from liquid-filled corners. We study 
six capillary shapes, including regular polygons of 3 ,4  and 6 sides and rectangles with 
aspect ratios 1.2, 1.5 and 2. The results show that the pressure drop in these capillaries 
is about a third that in the circular capillary, agreeing with the above physical 
argument. 
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FIGURE I .  Control volumes. (a) shows the control volume for a bubble of length L flowing through 
a wetting liquid in a square capillary. Ac is the cross-sectional area of the capillary, and S, is the area 
of the sides. A Cartesian coordinate system is attached to the nose of the bubble. (b) shows the divided 
control volumes. The centre control volume contains the bubble. The driving force (pb-pf )AT 
balances the drag D acting on the plane sides S,. The corner control volumes are filled with liquid. 
The dividing surface (unshaded) has negligible shear force acting on it. 

2. Integral force balance 
A square capillary demonstrates the force balance. Given a long bubble of length L, 

the control volume is defined as a square column of length L that encloses the bubble 
and its surrounding liquid, as shown in figure 1. The control volume moves with the 
bubble, so the flow is steady in this moving reference frame. A Cartesian coordinate 
system is fixed at the nose of the bubble with x pointing downstream. 

In the force balance, body forces such as gravity and inertia are negligible compared 
with surface forces, owing to the small size of the capillary. In addition, only 
streamwise surface forces are needed for determination of pressure-velocity relations. 
There are two types of surface force acting on the control volume: the shear force on 
the sides, and the normal force on the ends. A force balance demands that they be 
equal : 

!Isc C a Z  dA = /IAc [p(x = L) -p(x = O)] dA, (2.1) 
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(a) (b) 

FIGURE 2. Cross-sections of bubbles in a square capillary. (a) A cross-section near the front end of 
a moving long bubble. The thick line defines a centre region that consists of the bubble (clear) and 
the surrounding liquid films (shaded). A ,  is the area of the centre region, and L,  its perimeter. R is 
the radius of the corner interface. The thickness of the films is exaggerated. (b) The two-dimensional 
interface at the middle of a static non-wetting long bubble. The cross-sectional area of the bubble is 
d, which has perimeter 9. R, is the radius of circular-arc meniscus. 

Cap i 11 a r y 
shapes 

N = 3  
N = 4  
N = 6  
B =  1.2 
B =  1.5 
B = 2  
Circular 
Slot 

Cf 
12.44 
10.34 

11.55 
13.85 
18.48 
24.37 

9.329 

7.756 

CLJ 

L < Ca-' L = Ca-' L = Ca-5'3 

16.07 16.09 21.66 
13.35 13.38 20.22 
12.05 12.07 20.27 
14.92 14.94 22.27 
17.89 17.94 25.55 
23.87 23.98 3 1.08 
31.47 3 1.47 3 1.47 
10.02 10.02 10.02 

L < Ca-l L = Ca-l L = Ca-5/3 

3.536 3.541 4.765 
3.553 3.559 5.380 
3.565 3.570 5.998 
3.305 3.31 1 4.933 
3.163 3.172 4.517 
3.151 3.165 4.103 

5.009 5.009 5.009 
10.02 10.02 10.02 

TABLE 1. Coefficients of drag and pressure drop 

where u is the x-component of fluid velocity, a p m  is the outward normal derivative, 
S, represents the side area, and A ,  is the end area. Throughout this paper, all 
parameters are made dimensionless by the radius of the largest inscribed sphere a, the 
surface tension CT, and the bubble velocity U,  unless stated otherwise. Because the 
bubble is long ( L  9 l ) ,  the pressure difference in (2.1) is an order larger than the normal 
viscous stresses at the end planes. Hence, the normal viscous stresses are neglected in 
the force balance. Similarly, variation in fluid pressure over each end plane is small 
compared with the pressure difference. Hence, the pressure is taken as uniform at the 

(2.2a, b) 

(2.3) 

The pressure force drives both the bubble and the liquid. The shear force also acts on 
both. However, by dividing the control volume into a bubble and a liquid region, it is 
possible to determine the forces that act only on the bubble or the liquid. 

Figure 1 (b) shows how the control volume is divided. The centre control volume 
contains the bubble, whereas the corner control volumes are filled with liquid. The 
dividing surface has negligible shear force acting on it. The long central portion of the 
dividing surface coincides with the bubble surface, and is therefore free of shear force. 
The ends of the dividing surface cut through the flowing liquid. However, the contact- 
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line equation (3.2) in Part 1 shows that the ends are of length 0(1), which are much 
shorter than the length of the bubble. Thus, the shear force acting on the dividing 
surface is small compared with the forces in (2.3). Thus, when (2.3) is applied to the 
divided control volumes, the pressure force on each control volume must balance the 
shear force on that control volume. 

The centre control volume yields the relation of pressure drop versus bubble velocity. 
A force balance on the centre control volume requires (figure 1 b )  

where S,  represents the plane sides of the control volume (figure 1 b) ,  and A ,  is the 
projected area of the bubble and fluid films (figure 2a). The left-hand side of (2.4) 
is the drag D of the bubble, which is evaluated in $3 using the fluid velocity profiles 
derived in Part 1. The result gives 

where C, depends on capillary geometry and bubble 
Substitution of (2.5) into (2.4) gives 

5 

length, as shown in table 1. 

Since A ,  = 0(1), and since A ,  differs only by 0(Ca2I3) 
a2 of the static bubble depicted in figure 2(b) ($5) ,  

L D  

d 
p b  -pf  = - Caz13 

(2.6) 

from the cross-sectional area 

Table 1 lists the values of C D / d  for various polygonal capillaries. Equation (2.7) holds 
for the bubble and the liquid plug flow because both move at roughly the same speed 
($6). 

A force balance on the corner control volumes determines the relation of liquid 
pressure versus liquid flow in the corners. Since the bubble is long, the corner flow is 
predominantly unidirectional and, therefore, obeys a linear pressurevelocity relation. 
This relation is derived in $5.  

3. Drag 
The drag of a long bubble is the force exerted by capillary wall on the liquid films 

surrounding the bubble, and is evaluated by integration of the streamwise viscous 
shear stress over the wall. As the wetting fluid is dragged by the wall into the film, it 
experiences the largest shear stress just before entering the film. A similar mechanism 
at the back end of the film generates another peak in the shear stress. Thus, the drag 
is concentrated at the two ends of a long bubble, so the two ends are treated separately. 

3.1. Front end 
By symmetry, the drag on the front of the bubble requires evaluation only on half a 
side. We choose the surface at y = 1 to demonstrate the calculation. The drag on the 



100 H. Wong, C. J .  Radke and S.  Morris 

FIGURE 3. Domains of integration at the front and back ends. The rectangular domains are part of 
the wall surface at y = 1. A ,  is the area covered by the thin film. n and s are local Cartesian 
coordinates normal and tangent to the film boundary. 

where S, is the domain 0 < z d b and 0 d x d x, (figure 3), and u is the x-component 
of fluid velocity. Since the drag arises predominantly from the tip of the film, x, is 
chosen sufficiently far from the front so that any variation of it has no effect on the 
value of the drag. 

The domain of integration S, can be reduced to the area A ,  covered by the film 
(figure 3) because the shear stress is strongest there. (The precise location of the film 
is given in Part 1.) Thus, 

D, = / l A F C a G ( y  au = 1)dxdz. 

The velocity field in the fluid film is given by (4.5) of Part 1 as 

d(V2h) 
Cau = Ca+[h( l  - y ) - i ( l  -y)']- 

ax (3.3) 

where h is the film height and V = ic?jDx+kc?/az. Thus, the integrand in (3.2) is 

(3.4) 

This expresses the balance between the x-components of shear and capillary forces 
acting on a column of base ax2z and extending from the wall to the interface. 

A simple expression for the drag is obtained by converting the area integral in (3.2) 
into a line integral. First, the integrand in (3.2) is rearranged into a divergence form, 

1 au 
aY 

Ca-(y  = 1) = V .  . 

The divergence theorem is then applied to yield 

D, = $ [ F V h - i ( h V ' h + ~ V h . V h )  1 eeds, 
aAF ax 

(3.5) 

where e is a unit vector normal to the boundary aA, of the film area A,, and s is a local 
Cartesian coordinate tangent to aA, as shown in figure 3. 

The line integral in (3.6) has significant values only at the front curved section (figure 
3). At the front of the film boundary, Part 1 gives h - Cazi3, n - Cali3, s - 1, and 
i -  e = - cos q5 - 1, where n is a local Cartesian coordinate normal to the boundary, and 
$ is the angle between n and the negative x-axis. Thus, the integral along the curved 
section is 0(CaZi3), which is an order larger than the integral along the other two 
straight sections. The integral along x = x, is of order Ca4I3, because h - Ca2i3, z - 1, 
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and x 9 1. The integral along the symmetry plane z = 0 is exactly zero because i. e = 0 
and ah/ax = 0. Hence, (3.6) simplifies to 

D, = J c [ h ~ - l ~ ) ’ ] c o s $ d s ,  an2 2 an (3.7) 

where C denotes the curved section of the film boundary with n + co. The line integral 
is further simplified by transforming the independent variable from s to z ,  

Here, b is the half width of the film as shown in figure 3. 
The integrand in (3.8) has been determined in Part 1 ,  Appendix B as 

[ h $ - ~ ( ~ ) 2 ] c i k , k , ( 3 C a c o s $ ) 2 1 3  as n +  00, (3.9) 

where k ,  = 0.64304 and k ,  = 2.8996. The angle $ = $(z) is found from the static 
contact line, which differs from the location of the film boundary only by order Call3 
in the limit Ca+O (Ruschak & Sriven 1977). The contact-line equation (3.2) in Part 1 
gives - cos$ = [l+(&)’tan2(3] -112 , 

(3.10) 

where c is a fitting constant that governs the shape of the contact line. Table 1 in Part 
1 lists analytic solutions of b and numerical solutions of c for various polygonal 
capillaries. 

The drag on the basic unit of symmetry (shown in figure 3)  follows by substituting 
(3.9) and (3.10) into (3.8): 

0, = k ,  k,(3Ca)213 I[ 1 + (2kY ~ tan2 (;:)l””z. - (3.11) 

k,, k,, and Ca are intrinsic to the motion of the bubble, whereas the integral depends 
only on the geometry of the contact line. This equation can be applied easily to other 
menisci in motion, once the shape of the contact line is known. 

Equation (3.11) shows clearly that the drag-velocity scaling is a characteristic of the 
motion of the bubble and is independent of capillary geometry. The same conclusion 
holds for the back of the bubble, as shown below. 

3.2. Back end 
The drag at the back of a long bubble in a polygonal capillary is qualitatively different 
from that at the front. Figure 3 shows the rectangular domain at y = 1 where the drag 
is evaluated. Following the procedures for the front, we obtain 

D, = [ J c a g ( y  = 1)dxdz = Jc[ h--- Z $71 - cos$ds. (3.12) 

Here, C denotes the curved part of the film boundary asymptotically far from the film. 
The independent variable is then converted from s to z ,  

(3.13) 
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, ,,,,,.,, , 11111,, , , 

p= 1.000 
y=  0.90 

w 

p = 0.7485 

I 'lnud ' ' I1 

This expression differs in sign from (3.8) because, here, s increases as z decreases. The 
integrand in (3.13) is given in Part 1, Appendix B as 

(3.14) 

where a is the mean curvature of the static bubble and h, = h,(z) is the film height 
arriving at the back end. b, is a numerically determined function of b, as shown in 
figure 9 of Part 1, where 

ah1 

[ 3 C a c o ~ ( n - $ ) ] ~ ~ ~  
b, = (3.15) 

The drag on the basic unit of symmetry (shown in figure 3) is 

D, = --01 h,b,dz. (3.16) 

The drag is a function of bubble length L because h, depends on L. Part 1 establishes 
that, for L - Ca-5/3 or less, h, - Ca2I3. Thus, b, - 1, so b, - 1 (by figure 9 of Part 1). 
Equation (3.14) then gives D, N Ca2I3. Figure 10 of Part 1 shows the integrand h,!, as 
a function of z for L 4 Ca-', L = Ca-l, and L = CaP5l3 and for two different capillary 
sides. The results show that the maximum of h, b, need not be located at the centre of 
the film. Table 1 shows that the drag increases with L for L < Ca-"'. 

It is interesting to know if the drag would increase indefinitely with L because the 
limit L+m or h, = 0 gives rise to a moving contact line with unbounded drag (Dussan 
V. 1979). The limit h,+O corresponds, according to (3.15), to b,+O. From the 
numerical solution of b,(b,), we find 

b, + /3b;Yln (b,) as b, + 0, (3.17) 

where /3 = 1 .OOO and y = 0.90 are determined by fitting. In figure 4, b,/ln (b,) is plotted 
against b, to show the power-law behaviour. Substitution of (3.17) into (3.16) gives 
D, + 0 as b, --f 0. Thus, the drag vanishes as h, + 0 or L +a, so the limit is singular. 

l 
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(In the other limit of h, + 00 or b, --f co, figure 4 shows that b, again obeys the 
functional form in (3.17), but with ,8 = 0.7485 and y = 0.7863. In this limit, D, + - co.) 

In contrast to the front of the bubble, the drag at the back depends on the film 
thickness h, and the static curvature a. While the drag at the front is always 
proportional to CU' /~ ,  the drag at the back can be zero or infinite depending on the 
incoming film thickness. These differences become apparent in polygonal capillaries 
because of film rearrangement. In a circular capillary, the fluid film does not rearrange. 
Hence, the drag at the back reduces to a simple form that conceals the differences. 

3.3. Full bubble 
The drag D of a long bubble is the sum of the drag at the front and back ends: 

D, = 2ND, = C, Ca2I3, (3.18) 

D,  = 2ND, = C, Ca2l3, (3.19) 

D = D, + D, = C, Ca213. (3.20) 

Here N is the number of sides of the polygon. Values of C, and C, are listed in table 
1 for capillary shapes of an equilateral triangle ( N  = 3),  a square ( N  = 4), and a regular 
hexagon ( N  = 6)  and for L 4 Ca-l, L = Ca-', and L = Ca-'I3. 

The basic unit of symmetry of a rectangular capillary is a quadrant of the rectangle. 
The drag from the unity side is different from the side with length B because the contact 
lines are different. Therefore, (3.11) and (3.16) must be applied individually to each 
wall. Values of C, and C, are also listed in table 1 for rectangular capillaries with 
aspect ratios B = 1.2, 1.5 and 2.0 and for L 4 Ca-l, L = Cap', and L = C U - ' ~ ~ .  

The drag of a long bubble is proportional to CaZi3, independent of bubble length. 
Section 3.2 shows that the drag at the back of the bubble depends weakly on the length 
of the bubble: D, = O(Ca2I3) for L d O(CU-'/~), and D, = 0(Ca2I3) for L % ( X 5 I 3 .  

However, because the maximium D, = O(CU'/~) and because the drag (D,) at the front 
is O ( C U ~ / ~ ) ,  the total drag D - Ca2I3, independent of bubble length. 

For comparison, we also calculate the drag of long bubbles in circular capillaries and 
slots. In a circular capillary the contact line is normal to the flow, so cos$ = 1 .  In 
addition, the deposited film does not rearrange, i.e. h, = h, = k , ( 3 C ~ ) ' / ~ / a .  This gives 
b, = k ,  and b, = b,(k,) = -0.84529, independent of bubble length. Thus, for a circular 
capillary of unit radius, (3.11) and (3.16) require 

Df = 2nk, k2(3Ca),l3 = C, Ca2I3, (3.21) 

Db = - 2nk, b,(3Ca),I3 = C, Ca2I3. (3.22) 

For a slot of height 2, the drag per unit slot width at the front and back of the bubble 
is 

D, = 2k, k , ( 3 C ~ ) , / ~  = C, Ca2I3, (3.23) 

6, = -2k, b , ( 3 C ~ ) ' ~ ~  = C,  C U ' / ~ .  (3.24) 

As before, the total drag of the bubble is 

D = D, + D, = C, CaZi3. (3.25) 

Table 1 lists the values of C, and C, for comparison. These results show that the 
drag--velocity scaling is independent of capillary geometry. 
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4. Fluid pressure drop 

the difference balances the drag. This balance is given by (2.7) as 
Fluid pressure at the back of a flowing bubble is higher than that at the front, and 

L D  

d 
p b  -pf = - Ca2I3, (4.1) 

where d is the cross-sectional area of the static bubble determined by Wong, Morris 
& Radke (1992). Values of C D / d  are listed in table 1 for different capillaries. (Our 
value for a circular capillary differs slightly from that of Bretherton (1961) because his 
solution of b,(k,) is off by 14%.) We observe that the pressure drop in six different 
polygonal capillaries for L < Ca-l is roughly the same and is about a third that in the 
circular capillary. The pressure-velocity scaling law is thus insensitive to capillary 
geometry. 

The integral method that calculates the fluid pressure drop across a long bubble also 
applies to the bubble front or back individually. As shown in the Appendix, an integral 
force balance on the front end of a long bubble gives 

where the fluid pressure pf is gauged relative to the gas pressure (which is set to zero), 
and a is the mean curvature of the static bubble. Substitution of (4.2) into (4.1) gives 
the fluid pressure at the back end: 

* 

These end pressures apply to finite as well as semi-infinite bubbles. Moreover, they 
show that the first-order change in bubble shape is O(CaZi3). We have also determined 
the end pressures by the method of matched asymptotic expansions and arrived at the 
same solution (Wong 1992, p. 196). Nevertheless, we find that the integral method is 
simpler and illustrates better the physics of the problem. 

5. Fluid flow 
A long bubble in a circular tube acts as a tight-fit piston. Therefore, the bubble and 

fluid move at roughly the same speed (Bretherton 1961). A long bubble in a polygonal 
tube, however, behaves like a leaky piston. The fluid prefers to bypass the bubble 
through the leaky corners because of the large drag of the bubble. For moderately long 
bubbles, the corner flow is an order faster than the bubble. This leading contribution 
to fluid flow is missing in circular capillaries. Thus, polygonal capillaries display 
certain foam flow behaviours that cannot be explained using circular-tube models. 

Fluid flow in the corner control volume (shown in figure lb) is predominantly 
unidirectional. As shown in figure 1 (a), a long bubble has an extended middle section 
where the cross-sectional area of the bubble remains essentially constant. The end 
regions where the area varies significantly are of length order one because the three- 
dimensional end meniscus approaches the two-dimensional corner meniscus ex- 
ponentially (see (3.2) of Part 1). Away from the ends, the area of the fluid-filled corners 
varies by order Ca2I3 because the capillary pressure varies by that order as indicated by 
(4.2) and (4.3). Since the corner area is O(l), the variation in area is negligible. Thus, 



Motion of long bubbles in polygonal capillaries. Part 2 105 

Capillary 
shapes 

N = 3  
N = 4  
N = 6  
B = 1.2 
B = 1.5 
B = 2  

K C l t  CZ 

6.623 x 4.506 x 0.87486 
7.220 x 6.415 x 0.93968 
5.011 x 5.157 x 0.97557 
1.020 x 7.025 x 0.94024 
1.482 x 7.812 x 0.94239 
2.218 x 8.737 x 0.94713 

t For L < Ca-'. 

TABLE 2. Flow constants 

fluid flow in the corner control volume is taken as unidirectional. In such cases, an 
integral force balance is unnecessary because for unidirectional flows the pressure 
gradient is constant and is related to the non-dimensional volume flux Q, by 

dP Ql = & ( - z) 
where K is a constant that depends only on corner geometry. Unidirectional flows along 
corners bounded by a wedged wall and a circular-arc meniscus have been studied by 
Ransohoff & Radke (1988). Their solutions, rearranged into the form of ( 5 4 ,  give the 
values of K in table 2 for different polygonal capillaries. The pressure gradient is taken 
as ( p b - p f ) / L  (figure 1). Thus, 

The pressure drop is then eliminated using (4.1), 

Q, represents a ratio of corner-flow velocity to bubble velocity because Q, was made 
dimensionless by a2U. Thus, (5.3) shows that the corner flow is an order faster than the 
bubble. The negative sign indicates that the flow is in the opposite direction to x and 
in the same direction as the bubble. 

Beside corner flow, the fluid also flows by pushing the bubble, which acts as a (leaky) 
piston. The plug flow so generated equals the velocity of the bubble multiplied by the 
cross-sectional area of the bubble, i.e. 

Q2 = -d, (5.4) 

where, as before, d is the area of the static bubble. 
The sum of corner flow and plug flow gives the total fluid flow QT, 

QT = lQi + Q,l. (5 .5 )  
By dividing QT by the capillary area A,, an average fluid velocity is obtained as 

Values of c, and c, for various capillaries are listed in table 2. The constant 
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c, = K C ~ / ~ A ~  is calculated using the value of C, corresponding to L 4 Ca-l. Other 
values of C, for L 2 O(Ca-') are not needed because when L % C U - ~ / ~  the corner 
flow is already negligible compared with the plug flow. 

The corner and plug flows in (5.6) are listed in descending powers of Cu. However, 
either flow can dominate because the bubble length L is arbitrary. When L % Cu-'/', 
(5.6) gives V =  c2(= &/A,) .  Thus, when a bubble is very long or semi-infinite, the 
average fluid velocity is the volume flow rate of the moving bubble divided by the area 
of the capillary. Table 2 shows that c, - 1 for polygonal capillaries. For circular 
capillaries, c, = 1. 

When 1 < L < C U - ~ / ~ ,  (5.6) gives V = c, L - ~ C U - ' / ~ .  In the limit Cu+O, I/ % 1, so the 
liquid moves much faster than the bubble. In this case, two bubbles of lengths L, and 
L, and velocities U,  and U,, when driven by the same liquid flow, obey 

Thus, longer bubbles move faster, because the resistance to the corner flow is higher. 
This bubble-length dependence is a consequence of corner flow and is absent in circular 
capillaries. 

is relevant to foam flow because foam bubbles are only 
moderately long. In this case, (5.6) shows that the corner flow dominates as Ca+O. 
However, because c, 4 1 (table 2), the corner flow is small compared with the plug flow 
at Ca - lop6, which is a typical value encountered in foam-flow experiments. Even 
smaller capillary numbers are needed to see the corner-flow effects. Transition at such 
small Ca is unexpected and explains certain peculiar foam behaviours as discussed in 
the next section. 

The case of 1 < L < 

6. Fluid pressure versus fluid flow 
The gradient in fluid pressure varies linearly with fluid flow in one range of flow rate 

and varies nonlinearly in another range. This behaviour appears only in polygonal 
capillaries and is important in understanding foam flow in porous media. Let 
Q = CuQ, be the liquid flow rate made dimensionless by ca2/,u. (Q can be thought of 
as a capillary number based on liquid velocity.) 

The liquid flow is the sum of corner flow and plug flow: 

Q = IcaQi+caQzI (6.1) 

The pressure-velocity relation of corner flow is given by (5.2) as 

The pressure-velocity relation of plug flow is found from (4.1) with the bubble velocity 
replaced by the liquid velocity in (5.4): 

Substitution of (6.2) and (6.3) into (6.1) gives 
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In experiments, the flow rate is usually the independent variable. An accurate inversion 
of (6.4) follows when the plug-flow term inside the brackets is expressed in terms of Q 
using the plug-flow limit of (6.4): 

where 

(6.5a) 

(6.5b) 

is a critical volume flux that marks the transition from one regime to another. Equation 
(6.5 b) shows that Q, depends strongly on the bubble length L and the capillary shape 
( K ) .  For the six polygonal capillaries studied, Q, 4 
(table 2). For Q 4 Q,, (6.5a) gives 

because L $ 1 and K < 

This is the corner-flow regime where the pressure work is dissipated by fluid motion 
in the corners. For 1 % Q 9 Q,, 

This is the plug-flow regime where dissipation is strongest at the two ends of the 
deposited fluid films. The nonlinear relation also holds for circular tubes. However, the 
linear regime and the transition at extremely low capillary numbers can only be 
demonstrated by polygonal capillaries. Application of these results to foam flow is 
discussed below. 

In some foam-flow experiments, the pressure drop over a porous core varies linearly 
with liquid flow, but is rather independent of gas flow (Kovscek & Radke, 1994; and 
references therein). In some other experiments, the pressure drop varies nonlinearly 
with liquid or gas flow (e.g. Ali, Burley & Nutt 1985). The nonlinear behaviour has 
been explained using the nonlinear response of bubble flow in circular tubes, but none 
of the existing theory can predict the linear regime. We calculate the capillary number 
(Q) using the reported liquid velocities, and find that the first set of experiments was 
usually done at extremely low capillary numbers ( N lo-*), but in the second Q - lop5. 
This work shows that at extremely low capillary numbers (Q 4 Q,), the pressure 
gradient varies linearly with liquid flow. Further, the bubble motion dissipates an 
insignificant amount of mechanical energy, and therefore has no effect on the pressure 
gradient. As the capillary number increases (Q 9 Q,), the pressure-velocity relation for 
either the liquid or the bubble becomes nonlinear. These results provide a simple 
explanation for the complex foam behaviour. 

7. Conclusions 
The fluid pressure drop needed to move a long bubble in a polygonal capillary scales 

as Ca2I3. The proportionality constant for six different polygonal capillaries is about a 
third that for the circular capillary. Thus, the scaling relation of pressure drop versus 
bubble velocity is insensitive to capillary geometry. 

An integral method is adapted here to calculate the pressure drop. This approach is 
simpler than the method of matched asymptotic expansions because it does not require 
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the curvature of the first-order outer solution. In the integral method, the pressure drop 
is shown to balance the drag, which is determined by the films at the two ends of the 
bubble. Simple expressions have been obtained for the drag at both ends that can be 
easily applied to other moving menisci. Because the drag arises from thin films, 
capillary corners have no effect on the scaling relation between fluid pressure drop and 
bubble velocity. 

However, the physics of bubble flow is best illustrated by the relation of liquid 
pressure gradient versus liquid flow. In a polygonal capillary, the relation can be linear 
or nonlinear depending on the liquid flow rate Q. The transition occurs at a critical flow 
rate Q,, whose value depends strongly on capillary geometry and bubble length. For 
the six polygonal capillaries studied, Q, 4 For 1 % Q % Q,, the gradient in liquid 
pressure varies with QZi3 .  For Q 4 Q,, the pressure gradient varies linearly with Q. The 
linear regime is a result of corner flow and is therefore absent in circular capillaries. 
This linear regime is able to explain the observation in foam-flow experiments that, at 
extremely low flow rates, the pressure gradient varies linearly with liquid flow, but is 
independent of gas flow. 

This work was partially supported by NSF Grant EAR8610494 and by the Assistant 
Secretary for Fossil Energy, Office of Oil, Gas, and Shale Technologies of the United 
States Department of Energy under Contract DE-AC03-76SF00098 to the Lawrence 
Berkeley Laboratory of the University of California. H. W. acknowledges fellowship 
support from University of California, Berkeley during this work. 

Appendix. Dynamic pressure jump across the bubble front 
The fluid pressure drop across a long bubble is derived in $2 by a balance of forces 

on the whole bubble. Here, the fluid pressure at the front of the bubble is determined 
by a similar force balance on only the front end. Figure 5 shows the control volume 
of the force balance. There are three kinds of surface forces acting on the control 
volume: the pressure forces on the end planes at x = 0 and x = x,, the surface tension 
force on the end plane at x = xlr and the viscous shear force on the four sides of the 
square column. 

In the limit Ca + 0, the force balance simplifies. First, the fluid pressure in the corners 
at x = x1 is taken as the constant fluid pressure p f  at x = 0. This is possible because 
variation in fluid pressure is of order Ca213L-l, which is much smaller than the 
quantities that we are interested in. Secondly, the pressure force exerted on the fluid 
films at x = x1 is of order Cu413 (see Part l), and is negligible in the force balance. 
Remaining terms in the force balance include the pressure force p f  A,, the surface 
tension force L,, and the viscous shear force or the drag Df: 

where AT is the sum of the areas of the bubble and fluid films (figure 2a),  L, is the 
length of the interface at x = xl, and Df = Cf Ca213 is the drag at the front end given 
in 53.3. Dividing (A 1) by A ,  yields 

where A ,  in the smallest term has been replaced by the cross-sectional area d of the 
static bubble since they differ only by O(Ca2I3). When Ca = 0, the static solution states 
that p f  = -a, where a is the mean curvature of the static bubble (Wong et al. 1992). 



Motion of long bubbles in polygonal capillaries. Part 2 109 

FIGURE 5.  Schematic of the control volume on the front end of a long bubble (light shading) flowing 
through a wetting liquid (dark shading) in a square capillary. x1 is chosen sufficiently far from the 
front such that its location has no effect on the force balance. 

The rest of this Appendix is devoted to the proof of L, /A,  = a + O ( C L Z ~ / ~ ) .  The result 
gives the two leading terms of the fluid pressure as 

The proof consists of two steps. First, we show that L, = L ,  + O(Ca4I3) where L ,  is 
the perimeter of A ,  as illustrated in figure 2(a).  The two perimeters L,  and L ,  differ 
by the excess length of the film surface as compared with the length of capillary 
sidewalls covered by the films. The slope of the films has been determined in Part 1 as 
order C U ' ~ ~ .  This gives an excess length of order Therefore, 

Hence, to the leading order, LJLT is the ratio of perimeter to area for the area A,. 
The second step of the proof shows that the minimum of the ratio L , / A ,  occurs at 

Ca = 0. Since the area A ,  is defined by capillary side walls and circular-arc interfaces 
in the corners, the only parameter that can change A ,  is the radius R of the corner 
interface. The minimum of L, /A ,  is reached at a particular value of R corresponding 
to the static radius R,. This is expected because L, /A ,  represents the ratio of area to 
volume for a two-dimensional meniscus, so the minimum always occurs at equilibrium 
(Mayer & Stowe 1965). Since the deviation from the minimum must be at least 
quadratic, we obtain 

L T ( R )  

A T ( R )  
= - + O(R - R,)2, 

where 9 = L,(R,) is the perimeter of the cross-sectional area d( = A,(R,)) of the 
static bubble, as shown in figure 2(b). Appendix A in Part 1 gives LZ/d = a. Since R 
differs from R, by order of Ca2I3, (A 4) and (A 5 )  give 

5 = a + 0 ( c a 4 / 3 ) .  

AT 
This completes the proof. 
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